skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Struble, William"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Measurements of cosmic-ray-produced beryllium-10, neon-21, and helium-3 in quartz in a soil profile from a forested landscape in the Oregon Coast Range show that the cosmogenic noble gases 21Ne and 3He are depleted relative to 10Be in the shallow subsurface. The noble gases are mobile in mineral grains via thermally activated diffusion and 10Be is not, implying that noble gas depletion is the result of surface heating by wildfires and subsequent mixing of partially degassed quartz downward into the soil. Cosmogenic noble gas depletion by wildfire heating of soils is a potential means of estimating wildfire intensity and/or frequency over pre-observational timescales. 
    more » « less
  2. Landslides are a significant hazard and dominant feature throughout the landscape of the Pacific Northwest. However, the hazard and risk posed by coseismic landslides triggered by great Cascadia Subduction Zone (CSZ) earthquakes is highly uncertain due to a lack of local and global data. Despite a wealth of other geologic evidence for past earthquakes on the Cascadia Subduction Zone, no landslides have been definitively linked to such earthquakes, even in areas otherwise highly susceptible to failure. While shallow landslides may not leave a lasting topographical signature in the landscape, there are thousands of deep-seated landslides in Cascadia, and these deposits often persist for hundreds of years and multiple earthquake cycles. Synthesizing newly developed inventories of dated large deep-seated landslides in the Oregon Coast Range, we use statistical methods to estimate the proportion of these types of landslides that could have been triggered during past great Cascadia Subduction Zone earthquakes. Statistical analysis of high-precision dendrochronology ages of landslide-dammed lakes and surface roughness-dated bedrock landslides reveal Cascadia Subduction Zone earthquakes may have triggered 0–15 % of large deep-seated landslides in the Oregon Coast Range over multiple earthquake cycles. Our results refine estimates from previous studies and further suggest that coseismic triggering accounts for a small fraction of the total deep-seated bedrock landslides mapped in coastal Cascadia. However, if the real rate of coseismic landslide triggering during CSZ earthquakes is near our estimated upper bound for the 1700 CSZ earthquake, we estimate up to 2400 coseismic large deep-seated landslides could occur in the Oregon Coast Range in a single earthquake. These findings suggest Cascadia is consistent with global observations from other subduction zones and that coseismic landslides may still represent a serious geohazard in the region. 
    more » « less
  3. Abstract. Debris flows regularly traverse bedrock channels that dissect steep landscapes, but our understanding of bedrock erosion by debris flows and their impact on steepland morphology is still rudimentary. Quantitative models of steep bedrock channel networks are based on geomorphic transport laws designed to represent erosion by water-dominated flows. To quantify the impact of debris flow erosion on steep channel network form, it is first necessary to develop methods to estimate spatial variations in bulk debris flow properties (e.g., flow depth, velocity) throughout the channel network that can be integrated into landscape evolution models. Here, we propose and evaluate two methods to estimate spatial variations in bulk debris flow properties along the length of a channel profile. We incorporate both methods into a model designed to simulate the evolution of longitudinal channel profiles that evolve in response to debris flow and fluvial processes. To explore this model framework, we propose a general family of debris flow erosion laws where erosion rate is a function of debris flow depth and channel slope. Model results indicate that erosion by debris flows can explain the occurrence of a scaling break in the slope–area curve at low-drainage areas and that upper-network channel morphology may be useful for inferring catchment-averaged erosion rates in quasi-steady landscapes. Validating specific forms of a debris flow incision law, however, would require more detailed model–data comparisons in specific landscapes where input parameters and channel morphometry can be better constrained. Results improve our ability to interpret topographic signals within steep channel networks and identify observational targets critical for constraining a debris flow incision law. 
    more » « less
  4. null (Ed.)
    Abstract. Estimation of erosion rate is an important component of landscapeevolution studies, particularly in settings where transience or spatialvariability in uplift or erosion generates diverse landform morphologies.While bedrock rivers are often used to constrain the timing and magnitude of changes in baselevel lowering, hilltop curvature (or convexity), CHT, provides an additional opportunity to map variations in erosion rate given that average slope angle becomes insensitive to erosion rate owing to threshold slope processes. CHT measurement techniques applied in prior studies (e.g., polynomial functions), however, tend to be computationallyexpensive when they rely on high-resolution topographic data such as lidar,limiting the spatial extent of hillslope geomorphic studies to small studyregions. Alternative techniques such as spectral tools like continuouswavelet transforms present an opportunity to rapidly document trends inhilltop convexity across expansive areas. Here, we demonstrate howcontinuous wavelet transforms (CWTs) can be used to calculate the Laplacianof elevation, which we utilize to estimate erosion rate in three catchmentsof the Oregon Coast Range that exhibit varying slope angle, slope length,and hilltop convexity, implying differential erosion. We observe thatCHT values calculated with the CWT are similar to those obtained from2D polynomial functions. Consistent with recent studies, we find thaterosion rates estimated with CHT from both CWTs and 2D polynomialfunctions are consistent with erosion rates constrained with cosmogenicradionuclides from stream sediments. Importantly, our CWT approachcalculates curvature at least 103 times more quickly than 2Dpolynomials. This efficiency advantage of the CWT increases with domainsize. As such, continuous wavelet transforms provide a compelling approachto rapidly quantify regional variations in erosion rate as well aslithology, structure, and hillslope sediment transport processes, which areencoded in hillslope morphology. Finally, we test the accuracy of CWT and 2Dpolynomial techniques by constructing a series of synthetic hillslopesgenerated by a theoretical nonlinear transport model that exhibit a range oferosion rates and topographic noise characteristics. Notably, we find thatneither CWTs nor 2D polynomials reproduce the theoretically prescribedCHT value for hillslopes experiencing moderate to fast erosion rates,even when no topographic noise is added. Rather, CHT is systematicallyunderestimated, producing a power law relationship between erosion rate andCHT that can be attributed to the increasing prominence of planarhillslopes that narrow the zone of hilltop convexity as erosion rateincreases. As such, we recommend careful consideration of measurement lengthscale when applying CHT to estimate erosion rate in moderate tofast-eroding landscapes, where curvature measurement techniques may be prone to systematic underestimation. 
    more » « less
  5. null (Ed.)
  6. Abstract Steep landscapes evolve largely by debris flows, in addition to fluvial and hillslope processes. Abundant field observations document that debris flows incise valley bottoms and transport substantial sediment volumes, yet their contributions to steepland morphology remain uncertain. This has, in turn, limited the development of debris‐flow incision rate formulations that produce morphology consistent with natural landscapes. In many landscapes, including the San Gabriel Mountains (SGM), California, steady‐state fluvial channel longitudinal profiles are concave‐up and exhibit a power‐law relationship between channel slope and drainage area. At low drainage areas, however, valley slopes become nearly constant. These topographic forms result in a characteristically curved slope‐area signature in log‐log space. Here, we use a one‐dimensional landform evolution model that incorporates debris‐flow erosion to reproduce the relationship between this curved slope‐area signature and erosion rate in the SGM. Topographic analysis indicates that the drainage area at which steepland valleys transition to fluvial channels correlates with measured erosion rates in the SGM, and our model results reproduce these relationships. Further, the model only produces realistic valley profiles when parameters that dictate the relationship between debris‐flow erosion, valley‐bottom slope, and debris‐flow depth are within a narrow range. This result helps place constraints on the mathematical form of a debris‐flow incision law. Finally, modeled fluvial incision outpaces debris‐flow erosion at drainage areas less than those at which valleys morphologically transition from near‐invariant slopes to concave profiles. This result emphasizes the critical role of debris‐flow incision for setting steepland form, even as fluvial incision becomes the dominant incisional process. 
    more » « less
  7. Abstract Bedrock landsliding, including the formation of landslide dams, is a predominant geomorphic process in steep landscapes. Clarifying the importance of hydrologic and seismic mechanisms for triggering deep‐seated landslides remains an ongoing effort, and formulation of geomorphic metrics that predict dam preservation is crucial for quantifying secondary landslide hazards. Here, we identify >200 landslide‐dammed lakes in western Oregon and utilize dendrochronology and enhanced14C dating (“wiggle matching”) of “ghost forests” to establish slope failure timing at 20 sites. Our dated landslide dataset reveals bedrock landsliding has been common since the last Cascadia Subduction Zone earthquake in January 1700 AD. Our study does not reveal landslides that date to 1700 AD. Rather, we observe temporal clustering ofat leastfour landslides in the winter of 1889/1890 AD, coincident with a series of atmospheric rivers that generated one of the largest regionally recorded floods. We use topographic and field analyses to assess the relation between dam preservation and topographic characteristics of the impounded valleys. In contrast to previous studies, we do not observe systematic scaling between dam size and upstream drainage area, though dam stability indices for our sites correspond with “stable” dams elsewhere. Notably, we observe that dams are preferentially preserved at drainage areas of ∼1.5 to 13 km2and valley widths of ∼25 to 80 m, which may reflect the reduced downstream influence of debris flows and the accumulation of mature conifer trees upstream from landslide‐dammed lake outlets. We suggest that wood accumulation upstream of landslide dams tempers large stream discharges, thus inhibiting dam incision. 
    more » « less